
MATH 320 NOTES, WEEKS 5 AND 6

Recall that:
If V is a vector space with dimension n and β ⊂ V has size n. Then

TFAE:

(1) β is a basis;
(2) β is linearly independent;
(3) span(β) = V .

That means that when you prove that a set is a basis, after checking that
it has the right number of vectors, it is enough to prove that it is linearly
independent, or to prove that it generates the vector space. (You don’t have
to do both – in the finite dimensional case.)

Also, if dim(V ) = n and S ⊂ V , then

• if S is linearly independent, then |S| ≤ n, and S can be extended to
a basis.
• if S spans V , then |S| ≥ n and S contains a basis.

Theorem 1. Suppose that V is a finite dimensional vector space and W is
a subspace. Then dim(W ) ≤ dim(V ), and

dim(W ) = dim(V ) iff W = V.

Proof. Let α be a basis for W . Then α is a linearly independent subset of
V and so can be extended to a basis for V . It follows that dim(W ) = |α| ≤
|β| = dim(V ).

Next we show the “iff” statement. Clearly, if V = W , then they have the
same dimension.

For the other direction, suppose that dim(V ) = dim(W ) = n. We have
to show that V = W .

As above let α be a basis for W and extend α to a basis β for V . I.e.
α ⊂ β. Since both V and W have dimension n, we have that |α| = |β| = n.
But then α = β. So, V = span(β) = span(α) = W .

�

Example: In F 4, compute the dimensions of the following subspaces.

(1) W1 = {(a1, a2, a3, a4) ∈ F 4 | a1 + a2 = a3};
(2) W2 = {(a1, a2, a3, a4) ∈ F 4 | a1 + a2 = 0, a3 + a4 = 0};
(3) W3 = {(a1, a2, a3, a4) ∈ F 4 | a1 = a2 = a4 = 0}.

Solution:
Note that if a vector v ∈W1, it has the form

v = (a, b, a+ b, c).
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Then a basis forW1 is β1 = {(1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 0, 1)}, and dim(W1) =
3.

Next, if a vector v ∈W2, it has the form

v = (a,−a, b,−b).
Then a basis for W2 is β1 = {(1,−1, 0, 0), (0, 0, 1,−1}, and dim(W1) = 2.

Finally, if a vector v ∈W3, it has the form

v = (0, 0, a, 0).

Then a basis for W3 is β1 = {(0, 0, 1, 0}, and dim(W1) = 1.
Example: In M3,3(F ), compute the dimensions of the following sub-

spaces.

(1) W1 = {A | tr(A) = 0};
(2) W2 = {A | A is symmetric};
(3) W1 ∩W2.
(4) W1 +W2

Solution:
If A = (aij) ∈ W1, then tr(A) = a11 + a22 + a33 = 0. Note that if i 6= j,

then tr(Eij) = 0, and tr(Eii) = 1. A basis for W1 is

β = {Eij | i 6= j} ∪ {E11 − E33, E22 − E33}.
Then dim(W1) = 8.

If A = (aij) ∈ W2, then A is symmetric and so aij = aji for each 1 ≤
i, j ≤ 3. Note that for all 1 ≤ i ≤ 3, Eii, is symmetric. A basis for W2 is

γ = {E11, E22, E33} ∪ {Eij + Eji | i 6= j}
Then dim(W2) = 6.

If A = (aij) ∈ W1 ∩W2, then both aij = aji for each 1 ≤ i, j ≤ 3 and
a11 + a22 + a33 = 0 must be true. A basis is

α = {E11 − E33, E22 − E33} ∪ {Eij + Eji | i 6= j}.
Then dim(W1 ∩W2) = 5.
W1 + W2 = {A + B | tr(A) = 0 and B is symmetric}. If i 6= j, then

Eij ∈W1 ⊂W1 +W2. If i ≤ 3, Eii ∈W2 ⊂W1 +W2. So the standard basis
{Eij | 1 ≤ i, j ≤ 3} ⊂ W1 + W2, so V = W1 + W2, and dim(W1 + W2) =
dim(V ) = 9.

Note that

dim(W1 +W2) = 9 = 8 + 6− 5 = dim(W1) + dim(W2)− dim(W1 ∩W2).

2.1 Linear transformations.

Definition 2. Let V and W be vector spaces over a filed F . A map L :
V →W is called a linear transformation if for all x, y ∈ V and c ∈ F ,
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(1) L(x+ y) = L(x) + L(y), and
(2) L(cx) = cL(x)

If L is as above, the range of L, ran(L) = {L(x) | x ∈ V } and the kernel

of the nullspace of L is ker(L) = {x ∈ V | L(x) = ~0}

Examples of linear transformations

(1) L : R2 → R2 given by L((a, b)) = (a, 0).
(2) L : R3 → R3 given by L((a, b, c)) = (a+ b, c, 2a).
(3) The trace tr : Mn,n(F )→ F .
(4) The derivative D : P (F )→ P (F ) given by D(p) = p′.
(5) Matrix multiplication: Let A ∈Mn,m LA : Fm → Fn given by

LA(x) = Ax.

And here are some maps that are NOT linear transformations:

• f : R2 → R2 given by f((a, b)) = (a+ b, a2).
• f : R2 → R2 given by f((a, b)) = (a, 1).

Lemma 3. Let L : V → W be a linear transformation, where V,W are
vector spaces over F . Then:

• L(~0V ) = ~0W
• L(−x) = −L(x) for all x,
• L(x− y) = L(x)− L(y) and L(cx+ y) = cL(x) + L(y).

More generally, we can use linearity on any linear combination and get:

L(a1x1 + ...+ anxn) = a1L(x1) + ...+ anL(xn).

Proof. For the first item, let x be an arbitrary vector in V . Then L(~0) =

L(0x) = 0L(x) = ~0.
For the second item, L(−x) = L(−1x) = −1L(x) = L(x). The rest are

left as exercises.
�

Lemma 4. Let L : V → W be a linear transformation, where V,W are
vector spaces over F . Then:

• ker(L) is a subspace of V , and
• ran(L) is a subspace of W .

Proof. Suppose that x, y are both in ker(L) and c is a scalar. We have to
show that cx + y ∈ ker(L). To do that, we compute L(cx + y) = cL(x) +

L(y) = c~0 +~0 = ~0. It follows that ker(L) is a subspace.
For the range, suppose that y1, y2 are in ran(L) and c is a scalar. We

have to show that cx + y ∈ ran(L). First, by definition of the range, there
are some vectors x1, x2 in V , such that L(x1) = y1 and L(x2) = y2. Then
L(cx1 + x2) = cL(x1) + L(x2) = cy1 + y2 ∈ range(L). �

Definition 5. Suppose that L : V → W is a linear transformation. L is
one-to-one if whenever x, y are such that L(x) = L(y), then x = y. L is
onto if ran(L) = W .
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Lemma 6. Suppose that L : V →W is a linear transformation. Then L is
one-to-one iff kerL = {~0}.

Proof. For the easier direction,suppose that L is one-to-one. Let x ∈ ker(L).

Then L(x) = ~0 = L(~0). Since L is one-to-one , it follows that x = ~0.

For the other direction, suppose that kerL = {~0}. We have to show that L

is one-to-one. Suppose that L(x) = L(y). Then ~0 = L(x)−L(y) = L(x−y),

so x− y ∈ ker(L). It follows that x− y = ~0, and x = y.
�

Lemma 7. Suppose that L : V → W is a linear transformation, and
{x1, ..., xn} are vectors in V . Then,

(1) If {L(x1), ..., L(xn)} is linearly independent, then {x1, ..., xn} are lin-
early independent.

(2) If span({x1, ..., xn}) = V , then span({L(x1), ..., L(xn)}) = ran(L).

Proof. For item (1), suppose that a1x1 + ...anxn = ~0. Then, applying L to
both sides, we have that

L(a1x1 + ...anxn) = a1L(x1) + ...anL(xn) = ~0.

Since {L(x1), ..., L(xn)} is linearly independent, it follows that a1 = a2 =
... = an = 0.

For item (2), suppose that span({x1, ..., xn}) = V . Let z ∈ ran(L). Then
for some x ∈ V , z = L(x). Since {x1, ..., xn} spans V , let a1, ..., an be scalars
such that x = a1x1 + ... + anxn. Then z = L(x) = L(a1x1 + ... + anxn) =
a1L(x1) + ...+ anL(xn).

So, z ∈ span({L(x1), ..., L(xn)}). Since z was arbitrary, it follows that
span({L(x1), ..., L(xn)}) = ran(L). �


